VALENZISOMERISIERUNGEN DER 7,8-BIS (PHOSPHANO) CYCLOOCTA-1,3,5-TRIENE

G. Märkl,* B. Alig und E. Eckl
Institut für Organische Chemie der Universität Regensburg
Universitätsstraße 31, D-800 Regensburg

<u>Abstract</u>: Valence-isomerisations between the title compounds $\underline{1}$, 1,8-bis-(phosphano)octa-1,3,5,7-tetraenes $\underline{3}$ and 7,8-bis(phosphano)bicyclo-[4.2.0]octa-2,4-dienes 2 and vice versa are described.

Die 7,8-disubstituierten Cycloocta-1,3,5-triene 1 stehen mit den 7,8-disubstituierten Bicyclo[4.2.0]octa-2,4-dienen 2 und den 1,8-disubstituierten E,Z,Z,E-Octa-1,3,5,7-tetraenen 3 über kon- bzw. disrotatorische Ringschluß- bzw. Ringöffnungsreaktionen in Gleichgewichten, deren Lage von der Natur der Substituenten X abhängt:

 $X = PR_2$ ($\underline{\alpha}$, R = Ph; \underline{b} , $R = NEt_2$; \underline{d} , R = Cl; \underline{e} , R = H; \underline{f} , R = Me; \underline{h} , R = Et; \underline{c} , $X = P(Ph) NEt_2$; \underline{g} , $R = OCH_2 CF_3$)

Substituenten, die das Polyensystem in $\underline{3}$ erweitern (X= -C(0)R [1], -C(0)OR [2], -C=N [3], -C=C-R [4]) bewirken eine vollständige Ring-öffnung $\underline{1} \rightarrow \underline{3}$ bzw. $\underline{2} \rightarrow \underline{1} \rightarrow \underline{3}$, umgekehrt können die Tetraene $\underline{3}$ bei höherer Temperatur über $\underline{1}$ zu $\underline{2}$ (X= -COOCH $_3$ [2], -OCH $_3$ [5], -CH $_3$ [6]) cyclisieren. Die Carbinole (X= -CH(OH)R, -C(OH)R $_2$) liegen als $\underline{1}$, z.T. zusammen mit 2, vor [7].

Wir berichteten kürzlich über die Umsetzung von $COT^{2-}2Li^{+}$ mit Monochlorphosphanen $C1-PR_2$ [8], die unter den Reaktionsbedingungen durch Ringöffnung von 1, R= PR_2 , unmittelbar zu den 1,8-Bis(phosphano)-E,2,2,E-

octa-1,3,5,7-tetraenen 3 (3a, R= Ph; 3b, R= NEt₂; 3c, X= P(Ph)NEt₂) führt. In den 31 P-NMR-Spektren (CDCl₃, H₃PO₄ ext.) von 3a-c wird jeweils nur ein Resonanzsignal beobachtet (δ = -10.6 ppm (s); +90.4 (s); +57.1 (s)), was dafür spricht, daß beide Phosphanreste gleiche Konfiguration besitzen und die Valenzisomeren 2 bzw. 1 nicht in meßbarer Konzentration vorliegen (siehe auch [9]).

Für das Gleichgewicht $3 \stackrel{?}{\rightarrow} 1 \stackrel{?}{\leftarrow} 2$ spricht aber die Umsetzung des Tetraens 3a mit N-Phenyl-maleinimid zu dem Diels-Alder-Addukt 4a, das sich vom Bicyclus 2a ableitet:

 $\underline{4a}$, farblose, watteartige Verbindung, Schmp. 268-271 °C (aus Ethanol); \underline{MS} , m/e = 647 (51 %, M^{+*}), 462 (100, [M-PPh₂1⁺), 185 (45, PPh₂^{+*}); \underline{IR} , ν (CO) = 1700 cm⁻¹.

Photochemisch wandelt sich E,Z,Z,E-3a (Schmp. 178-180 °C) in ein Isomeres um (Schmp. 150-152 °C, aus n-BuOH, δ (31 P) = -10.49; -10.50 ppm), dem wir die Struktur E,Z,Z,Z-3a zuordnen. Wahrscheinlich unterliegt das E,Z,Z,E-Isomere 3a photochemisch einem disrotatorischen Ringschluß zu cis-1a, das dann thermisch unter konrotatorischer Ringöffnung in E,Z,Z,Z-3a [10] übergeht:

Die starke Abhängigkeit der Gleichgewichtslage $\underline{3} \stackrel{\bigstar}{\div} \underline{1} \stackrel{\bigstar}{\leftarrow} \underline{2}$ von den Substituenten R am Phosphor zeigt die Umwandlung von $\underline{3b}$ mit gasförmigem Chlor-

wasserstoff bei -50 °C in das Bis-dichlorphosphan. Das 250-MHz-¹H-NMR-Spektrum zeigt das ausschließliche Vorliegen des 7,8-Bis-(dichlorphosphano)bicyclo[4.2.0]octa-2,4-diens 2d, das durch eine konrotatorische Tetraen/Cyclooctatrien-Valenzisomerisierung zu 1d und eine sich anschließende disrotatorische Trien/Cyclohexadien-Isomerisierung entstanden ist. Die Bildung von 2d bereits vor der destillativen Reinigung wird durch ¹H-NMR-Kontrolle bewiesen.

2d, schwach gelbes öl, Sdp. 150-170 $^{\circ}$ C (Badtemp.)/10 $^{-2}$ Torr, Ausb. 28 %; MS (12 eV, 35 Cl); M+, m/e = 306 (64 %); $[\text{Cl}_2\text{P-CH=CH-PCl}_2]^+$, 228 (100); $[\text{M-PCl}_2]^+$, 205 (52). Die Fragmentierung zu Benzol und das 1,2-Bis-(dichlorophosphano)ethen-Radikalkation ist charakteristisch für Bicyclo-[4.2.0]octa-2,4-diene. Das 250-MHz- 1 H-NMR- und das 13 C-NMR-Spektrum bestätigen die Struktur.

Das ausschließliche Vorliegen der bicyclischen Struktur 2d gegenüber den offenkettigen Diphosphanen 3a-c kann nicht mit elektronischen Effekten gedeutet werden. Wahrscheinlich sind überwiegend sterische Effekte verantwortlich; mit den räumlich anspruchsvollen Substituenten PPh₂, $P(NEt_2)_2$, $P(NEt_2)$ Ph erfolgt bevorzugt die Ringöffnung $1 \rightarrow 3$, bei kleineren Substituenten, z.B. X= PCl_2 , verschiebt sich das Gleichgewicht $3 \stackrel{+}{\rightarrow} 1 \stackrel{+}{\leftarrow} 2$ zugunsten von 2.

Diese Annahme wird durch die Darstellung weiterer Derivate von $\underline{2d}$ bestätigt. Die Reduktion der Tetrachlorverbindung $\underline{2d}$ mit LiAlH $_4$ liefert das 7,8-Bis-(phosphano)bicyclo[4.2.0]octa-2,4-dien $\underline{2e}$ als farbloses, luftempfindliches öl in 71-proz. Ausb..

2e: MS (70 eV), M⁺, m/e = 170 (5 %); [M-PH₂]⁺, 137 (100); [H₂P-CH=CH-PH₂]⁺, 92 (89), C_6H_6 ⁺, 78 (59); 1 H-NMR (CDCl₃): P-H: 2.87 ppm (m), 1 J_{P/H} = 198.4 Hz; 31 P-NMR (CDCl₃, Breitbandentkopplung); δ = -122.9 ppm (d, J_{P/P} = 1.61 Hz), -142.9 ppm (breites s). Das aus 2d mit MeLi erhältliche 7,8-Bis-(dimethylphosphano)bicyclo[4.2.0]octa-2,4-dien 2f liegt nach den 1 H-NMR- und 31 P-NMR-Daten ebenfalls ausschließlich in der bicyclischen Form vor [9] (die 31 P-NMR-Kontrolle bei 25-100 $^{\circ}$ C läßt keine Valenzisomerisierung erkennen), das gleiche gilt auch für 2g (R= CH₂CF₃, Umsetzung von 2d mit 2,2,2-Trifluorethanol/DBU, schwach gelbes $^{\circ}$ 1).

Überraschenderweise liegt aber das Umsetzungsprodukt von $COT^{2-2}Li^+$ mit Diethylchlorphosphan bereits wieder in der offenkettigen Form 3h, $X=PEt_2$, vor.

Für die Annahme, daß die Ringöffnung der COT-Derivate <u>1a-c</u> zu <u>3a-c</u> durch sterische Effekte ausgelöst wird, spricht auch der Befund, daß das Bisphosphanoxid <u>5a</u> (farblose Kristalle, Schmp. 237-239 ^OC, Ausb. 51 %), das Sulfid <u>6a</u> (farblose Kristalle, Schmp. 210-214 ^OC, Ausb. 62 %) und das Methylphosphonium-Salz <u>7a</u> (gelbe Kristalle, Schmp. 239-241 ^OC, Ausb. 73%) von E,Z,Z,E-<u>3a</u> ebenfalls ausschließlich in der offenkettigen Form vorliegen, obwohl die elektronischen Eigenschaften des 4-bindigen kationischen Phosphors gegenüber denen des 3-bindigen Phosphors in den Phosphanen völlig verschieden sind:

LITERATUR:

[1] Th.s. Cantrell u. H. Shechter, J.Am.Chem.Soc. 89, 5868 (1967). [2] Th.S. Cantrell, ibid. 92, 5480 (1970). [3] H. Hoever, Tetrahedron Lett. 1962, 255. [4] E. Müller, H. Straub, J.M. Rao, ibid. 1970, 773. [5] H. Meister, Chem. Ber. 96, 1688 (1963). [6] R. Huisgen, A. Dahmen, H. Huber, Tetrahedron Lett. 1969, 1461; J.Am.Chem.Soc. 89, 7130 (1967). [7] Th.S. Cantrell, H. Shechter, J.Am.Chem.Soc. 89, 5877 (1967). [8] G. Märkl, B. Alig, E. Eckl, Tetrahedron Lett. 1983, 1955. [9] R. Benn, R. Mynott, W.J. Richter, Z. Naturforsch. 39b, 79 (1984). [10] Das aus MgCOT mit ClPPh₂ von uns entsprechend der Vorschrift von W.J. Richter erhaltene Tetraen schmilzt bei 163-164 °C (aus n-BuOH), alle spektroskopischen Daten sind aber mit dem oben beschriebenen E,Z,Z,Z-3a identisch.

(Received in Germany 5 August 1985)